Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 244
Filter
1.
Annals of the Rheumatic Diseases ; 82(Suppl 1):578, 2023.
Article in English | ProQuest Central | ID: covidwho-20242313

ABSTRACT

BackgroundAnti-MDA5 antibody positive dermatomyositis (MDA5-DM) is characterized by high mortality due to rapid progressive ILD. MDA5 is a cytosolic protein and a family of RIG-I like receptor, which functions as a virus RNA sensor and induces the production of such as type-1 IFN. Although little is known about the pathogenesis of MDA5-DM, it is notable that the similarities were reported between COVID-19 infection and MDA5-DM. It may suggest that there is a common underlying autoinflammatory mechanism. We reported that in MDA5-DM, (1) RIG-I-like receptor signaling is enhanced and (2) antiviral responses such as type 1 IFN signaling are also enhanced as compare with anti-ARS-antibody positive DM, and (3) the key for survival is suppression of RIG-I-like and IFN signaling (EULAR2022, POS0390). We also found that a significant role for uncontrolled macrophage in the pathogenesis of ILD by our autopsy case. Recently, it has been reported that tacrolimus (TAC) and cyclophosphamide (CY) combination therapy (TC-Tx) has improved the prognosis of cases with early onset of the disease, but there are cases that cannot be saved. Therefore, we devised BRT therapy (BRT-Tx). The Tx combines baricitinib (BAR), which inhibits GM-CSF and IFN-mediated signaling and effectively suppresses uncontrolled macrophages, with rituximab (RTX) and TAC, which rapidly inhibits B and T cell interaction and ultimately prevents anti-MDA5 antibody production.ObjectivesTo determine the differences in gene expression between BRT and TC-Tx for MDA5-DM in peripheral blood.MethodsTotal of 6 MDA5-DM (TC: 3, BRT: 3) were included and all of them had multiple poor prognostic factors. Peripheral whole blood was collected at just before and 2-3 months after the treatment. RNA was extracted, and quantified using a next-generation sequencer. Differentially Expressed Genes (DEGs) were identified by pre vs. post treatment. Gene Ontology (GO), clustering and Gene Set Variation Analysis (GSVA) were performed to DEGs. As one BRT case was added since our last year's report, we also reanalyzed the surviving vs. fatal cases. The IFN signature was scored separately for Types 1, 2, and 3, and the changes between pre- and post-treatment were investigated.ResultsTwo of three cases with TC died during treatment, while all three cases on BRT recovered. The cluster analysis of the DEGs separated deaths from survivors, not by type of treatment. Comparing surviving and dead cases, GO analysis revealed that the immune system via immunoglobulins and B cells was significantly suppressed in surviving cases. GO analysis of DEGs in each therapeutic group showed that expression of B cell-related genes such as lymphocyte proliferation and B cell receptor signaling pathway were significantly suppressed in BRT-Tx. On the other hand, TC-Tx significantly suppressed such pathways as cell proliferation and cell surface receptor signaling, and was less specific for the target cells than BRT-Tx. The changes in IFN signature score after treatment showed an increase in type 2 and 3 IFN scores in all fatal cases and an increase in type 1 IFN score in one fatal case.ConclusionBRT-Tx significantly suppressed gene expression associated with B cells, while TC-Tx was characterized by low specificity of therapeutic targets and suppression of total cell proliferation. Comparison of surviving and dead cases revealed that the combination of RTX contributed to the success of treatment, as suppression of the immune system mediated by immunoglobulins and B cells is the key for survival. Analysis of the IFN signature revealed an increase in IFN score after treatment in fatal cases, indicating that the combination of BAR is beneficial. The superiority of BRT-Tx seems clear from the fact that all patients survived with BRT-Tx while only one/three patients survived with TC-Tx.REFERENCES:NIL.Acknowledgements:NIL.Disclosure of InterestsMoe Sakamoto: None declared, Yu Nakai: None declared, Yoshiharu Sato: None declared, Yoshinobu Koyama Speakers bureau: Abbvie, Asahikasei, Ayumi, BMS, Esai, Eli-Lilly, Mitsubishi Tanabe, Grant/research support from: Abbvie, GSK.

2.
Cytotherapy ; 25(6 Supplement):S239, 2023.
Article in English | EMBASE | ID: covidwho-20239698

ABSTRACT

Background & Aim: Immune checkpoint inhibitors (ICI) revolutionized solid tumor treatment, however, in many tumors only partial response is achieved. Allocetra-OTS has an immune modulating effect on macrophages and dendritic cells and showed an excellent safety profile in patients including patients with sepsis and Covid-19. Here we investigated the anti-tumoral effect of Allocetra-OTS cellular therapy, in peritoneal solid tumor animal models. Methods, Results & Conclusion(s): Allocetra-OTS is manufactured from enriched mononuclear fractions and induced to undergo early apoptosis. Balb/c mice were inoculated intraperitoneally (IP) with AB12 (mesothelioma) with pLenti-PGK-V5-Luc-Neo and treated with anti- CTLA4 with or without Allocetra-OTS. Mice were monitored daily for clinical score and weekly using IVIS (Fig.1). Kaplan-Meier log rank test was done for survival. For Allocetra-OTS preparation, enriched mononuclear fractions were collected by leukapheresis from healthy eligible human donors and induced to undergo early apoptosis. Anti- CTLA4 standalone therapy significantly improved survival (Fig.2) from mean 34+/-9 to 44.9 +/-20 days. However, OTS standalone therapy was non-inferior and improved survival to 52.3 +/-20 days. Anti-CTLA4 + Allocetra-OTS combination therapy, ameliorated survival to 86.7+/-20 days with complete cancer remission in 60-100% of mice. Similar anti- tumoral effects of Allocetra-OTS were seen in mesothelioma model in a combination therapy with either anti-PD1 or cisplatin and using anti-PD1 in ID8 ovary cancer model. Based on single cell analysis confirmed by flow cytometry and pathology, the mechanism of action seems to be related or at least associated with an increase in f/480high peritoneal macrophages and a decrease in recruited macrophages, and to f/480high infiltration of the tumor. However, further studies are needed to confirm these observations. During IP tumor progression, Allocetra-OTS as a standalone therapy or in combination with ICI, or cisplatin, significantly reduced tumor size and resulted in complete remission in up to 100% treated mice. Similar results were obtained in ID8 ovary cancer. Based on excellent safety profile in > 50 patients treated in prior clinical trials for sepsis and Covid-19, Phase I/II clinical trial of Allocetra-OTS plus chemotherapy has started and three patient already recruited. A second phase I/II clinical trial of Allocetra- OTS plus anti-PD1, as a second- and third-line therapy in various cancers, was initiated in Q1 2023. [Figure presented]Copyright © 2023 International Society for Cell & Gene Therapy

3.
BMJ : British Medical Journal (Online) ; 369, 2020.
Article in English | ProQuest Central | ID: covidwho-20239103

ABSTRACT

Thirty fold increase In the province of Bergamo, Italy, researchers have reported a 30 fold increased incidence of Kawasaki like disease since the start of the covid-19 outbreak. Among the covid-19 group more children had cardiac symptoms (6 out of 10), Kawasaki disease shock syndrome (5 out of 10), macrophage activation syndrome (5 out of 10), and the need for adjunctive steroid treatment (8out of 10). In the pre-covid-19 group only two of 19 children had cardiac involvement and just three required adjunctive steroid treatment. A distinct syndrome Julia Kenny, a consultant in paediatric infectious diseases and immunology at Evelina London Children's Hospital, said that the Italian findings appear consistent with cases seen in the south east of England.

4.
Applied Sciences ; 13(11):6477, 2023.
Article in English | ProQuest Central | ID: covidwho-20235945

ABSTRACT

This paper presents raw plant materials and their characteristic compounds which may affect the immune system. Plant-derived agents in specific doses affect the body's non-specific, antigen-independent defense system. They have immunostimulatory effects on the entire immune regulatory system. They can enhance the immune response through various factors such as macrophages, leukocytes, and granulocytes, as well as through mediators released by the cellular immune system. This paper was inspired by the threats caused by the COVID-19 pandemic. The proper functioning of the immune system is important in limiting the effects of viral infection and restoring the normal functioning of the body. This paper also emphasizes the importance of the skillful use of plant immunostimulants by potential patients, but also by those who prescribe drugs. It is important not only to choose the right plant drug but above all to choose the correct dose and duration of treatment.

5.
Gut ; 72(Suppl 1):A25-A28, 2023.
Article in English | ProQuest Central | ID: covidwho-20234065

ABSTRACT

IDDF2023-ABS-0045 Figure 1 IDDF2023-ABS-0045 Figure 2 IDDF2023-ABS-0045 Figure 3 IDDF2023-ABS-0045 Figure 4

6.
J Endocrinol ; 258(2)2023 08 01.
Article in English | MEDLINE | ID: covidwho-20243273

ABSTRACT

Obesity is associated with a higher risk of severe coronavirus disease 2019 (COVID-19) and increased mortality. In the current study, we have investigated the expression of ACE2, NRP1, and HMGB1, known to facilitate severe acute respiratory symptom coronavirus-2 (SARS-CoV-2) cell entry, in adipose tissue from non-COVID-19 control patients with normal weight, overweight, and obesity. All factors were expressed, but no significant differences between the groups were observed. Furthermore, diabetes status and medications did not affect the expression of ACE2. Only in obese men, the expression of ACE2 in adipose tissue was higher than in obese women. In the adipose tissue from patients who died from COVID-19, SARS-CoV-2 was detected in the adipocytes even though the patients died more than 3 weeks after the acute infection. This suggests that adipocytes may act as reservoirs for the virus. In COVID-19 patients, the expression of NRP1 was increased in COVID-19 patients with overweight and obesity. Furthermore, we observed an increased infiltration with macrophages in the COVID-19 adipose tissues compared to control adipose tissue. In addition, crown-like structures of dying adipocytes surrounded by macrophages were observed in the adipose tissue from COVID-19 patients. These data suggest that in obese individuals, in addition to an increased mass of adipose tissue that could potentially be infected, increased macrophage infiltration due to direct infection with SARS-CoV-2 and sustained viral shedding, rather than preinfection ACE2 receptor expression, may be responsible for the increased severity and mortality of COVID-19 in patients with obesity.


Subject(s)
COVID-19 , Male , Humans , Female , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Overweight/complications , Peptidyl-Dipeptidase A/metabolism , Adipocytes/metabolism , Obesity/complications , Obesity/metabolism
7.
Cell Mol Immunol ; 20(7): 835-849, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20235826

ABSTRACT

Early and strong interferon type I (IFN-I) responses are usually associated with mild COVID-19 disease, whereas persistent or unregulated proinflammatory cytokine responses are associated with severe disease outcomes. Previous work suggested that monocyte-derived macrophages (MDMs) are resistant and unresponsive to SARS-CoV-2 infection. Here, we demonstrate that upon phagocytosis of SARS-CoV-2-infected cells, MDMs are activated and secrete IL-6 and TNF. Importantly, activated MDMs in turn mediate strong activation of plasmacytoid dendritic cells (pDCs), leading to the secretion of high levels of IFN-α and TNF. Furthermore, pDC activation promoted IL-6 production by MDMs. This kind of pDC activation was dependent on direct integrin-mediated cell‒cell contacts and involved stimulation of the TLR7 and STING signaling pathways. Overall, the present study describes a novel and potent pathway of pDC activation that is linked to the macrophage-mediated clearance of infected cells. These findings suggest that a high infection rate by SARS-CoV-2 may lead to exaggerated cytokine responses, which may contribute to tissue damage and severe disease.


Subject(s)
COVID-19 , Interferon Type I , Humans , SARS-CoV-2/metabolism , Interleukin-6/metabolism , COVID-19/metabolism , Interferon-alpha/metabolism , Macrophages/metabolism , Cytokines/metabolism , Phagocytosis , Interferon Type I/metabolism , Dendritic Cells/metabolism
8.
Front Immunol ; 14: 1171116, 2023.
Article in English | MEDLINE | ID: covidwho-20242239

Subject(s)
Hypoxia , Inflammation , Humans
9.
mBio ; : e0083423, 2023 Jun 08.
Article in English | MEDLINE | ID: covidwho-20240955

ABSTRACT

Alveolar macrophages (AMs) are unique lung resident cells that contact airborne pathogens and environmental particulates. The contribution of human AMs (HAMs) to pulmonary diseases remains poorly understood due to the difficulty in accessing them from human donors and their rapid phenotypic change during in vitro culture. Thus, there remains an unmet need for cost-effective methods for generating and/or differentiating primary cells into a HAM phenotype, particularly important for translational and clinical studies. We developed cell culture conditions that mimic the lung alveolar environment in humans using lung lipids, that is, Infasurf (calfactant, natural bovine surfactant) and lung-associated cytokines (granulocyte macrophage colony-stimulating factor, transforming growth factor-ß, and interleukin 10) that facilitate the conversion of blood-obtained monocytes to an AM-like (AML) phenotype and function in tissue culture. Similar to HAM, AML cells are particularly susceptible to both Mycobacterium tuberculosis and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. This study reveals the importance of alveolar space components in the development and maintenance of HAM phenotype and function and provides a readily accessible model to study HAM in infectious and inflammatory disease processes, as well as therapies and vaccines.IMPORTANCEMillions die annually from respiratory disorders. Lower respiratory track gas-exchanging alveoli maintain a precarious balance between fighting invaders and minimizing tissue damage. Key players herein are resident AMs. However, there are no easily accessible in vitro models of HAMs, presenting a huge scientific challenge. Here, we present a novel model for generating AML cells based on differentiating blood monocytes in a defined lung component cocktail. This model is non-invasive, significantly less costly than performing a bronchoalveolar lavage, yields more AML cells than HAMs per donor, and retains their phenotype in culture. We have applied this model to early studies of M. tuberculosis and SARS-CoV-2. This model will significantly advance respiratory biology research.

10.
Br J Pharmacol ; 2023 May 31.
Article in English | MEDLINE | ID: covidwho-20236393

ABSTRACT

BACKGROUND AND PURPOSE: COVID-19 infections caused by SARS-CoV-2 disseminated through human-to-human transmission can evoke severe inflammation. Treatments to reduce the SARS-CoV-2-associated inflammation are needed and are the focus of much research. In this study, we investigated the effect of N-ethyl-N'-[(3ß,5α)-17-oxoandrostan-3-yl] urea (NEOU), a novel 17α-ketosteroid derivative, on the severity of COVID-19 infections. EXPERIMENTAL APPROACH: Studies were conducted in SARS-CoV-2-infected K18-hACE2 mice. KEY RESULTS: SARS-CoV-2-infected K18-hACE2 mice developed severe inflammatory crises and immune responses along with up-regulation of genes in associated signalling pathways in male more than female mice. Notably, SARS-CoV-2 infection down-regulated genes encoding drug metabolizing cytochrome P450 enzymes in male but not female mice. Treatment with NEOU (1 mg·kg-1 ·day-1 ) 24 or 72 h post-viral infection alleviated lung injury by decreasing expression of genes encoding inflammatory cytokines and chemokines while increasing expression of genes encoding immunoglobins. In situ hybridization using RNA scope™ probes and immunohistochemical assays revealed that NEOU increased resident CD169+ immunoregulatory macrophages and IBA-1 immunoreactive macrophage-dendritic cells within alveolar spaces in the lungs of infected mice. Consequentially, NEOU reduced morbidity more prominently in male than female mice. However, NEOU increased median survival time and accelerated recovery from infection by 6 days in both males and females. CONCLUSIONS AND IMPLICATIONS: These findings demonstrate that SARS-CoV-2 exhibits gender bias by differentially regulating genes encoding inflammatory cytokines, immunogenic factors and drug-metabolizing enzymes, in male versus female mice. Most importantly, we identified a novel 17α-ketosteroid that reduces the severity of COVID-19 infection and could be beneficial for reducing impact of COVID-19.

11.
2023 IEEE International Conference on Integrated Circuits and Communication Systems, ICICACS 2023 ; 2023.
Article in English | Scopus | ID: covidwho-2326300

ABSTRACT

The heterotypic perspective of cancer depicts solid tumors as ecosystems composed of aberrant epithelium tumor cells and a multitude of cell types together referred to as stromal cells. Macrophages, which are innate immune cells, are overrepresented in certain environments. Tumor-associated macrophages (TAMs) are macrophages found in the tumor microenvironment;they are derived from the blood's monocytes and are essential for tumor progression. TAMs acquiring tumorigenic qualities is dependent on a complicated interaction between TAMs and tumor cells. Using co-culture studies, we showed that tumor-derived secretory signals promote Tams' tumor-promoting characteristics, shaping up Tams' features in ways that are advantageous to the tumor. When model human monocytes (THP-1) were co-cultured with A549 cells, the A549 cells exhibited increased proliferation, migration, and invasiveness due to the secretion of tumor-promoting cytokines from the THP-1 cells. We showed that EDA-containing Fibronectin secreted by A549 cells reliably mediates the pro-inflammatory response of THP-1 monocytes in a paracrine manner. Ablation of such responses by the treatment of THP-1 cells with TLR-4 blocking antibody implicated Fibronectin-TLR4 axis in tumor-associated inflammation and suggests a paradigm wherein lung carcinoma cell derived EDA-containing Fibronectin drives a pro-inflammatory and pro-metastatic tumor microenvironment. Interestingly, autocrine proliferation, migration, and invasion were all boosted by EDA-containing Fibronectin secreted by A549 cells. Lastly, we demonstrated that the EDA in Fibronectin activates the epithelial-mesenchymal transition pathway in A549 cells, hence granting these cells the ability to metastasize. © 2023 IEEE.

12.
Int Rev Cell Mol Biol ; 368: 61-108, 2022.
Article in English | MEDLINE | ID: covidwho-2322260

ABSTRACT

Tumor-associated macrophages (TAMs) are one of the most abundant immune components in the tumor microenvironment and play a plethora of roles in regulating tumorigenesis. Therefore, the therapeutic targeting of TAMs has emerged as a new paradigm for immunotherapy of cancer. Herein, the review summarizes the origin, polarization, and function of TAMs in the progression of malignant diseases. The understanding of such knowledge leads to several distinct therapeutic strategies to manipulate TAMs to battle cancer, which include those to reduce TAM abundance, such as depleting TAMs or inhibiting their recruitment and differentiation, and those to harness or boost the anti-tumor activities of TAMs such as blocking phagocytosis checkpoints, inducing antibody-dependent cellular phagocytosis, and reprogramming TAM polarization. In addition, modulation of TAMs may reshape the tumor microenvironment and therefore synergize with other cancer therapeutics. Therefore, the rational combination of TAM-targeting therapeutics with conventional therapies including radiotherapy, chemotherapy, and other immunotherapies is also reviewed. Overall, targeting TAMs presents itself as a promising strategy to add to the growing repertoire of treatment approaches in the fight against cancer, and it is hopeful that these approaches currently being pioneered will serve to vastly improve patient outcomes and quality of life.


Subject(s)
Neoplasms , Tumor-Associated Macrophages , Humans , Immunotherapy , Macrophages , Neoplasms/pathology , Quality of Life , Tumor Microenvironment
13.
Macrophage Targeted Delivery Systems: Basic Concepts and Therapeutic Applications ; : 1-556, 2022.
Article in English | Scopus | ID: covidwho-2315095

ABSTRACT

The proposed book is envisioned for the nascent and entry-level researchers who are interested to work in the field of drug delivery and its applications specifically for macrophage targeting. Macrophages have gained substantial attention as therapeutic targets for drug delivery considering their major role in health and regulation of diseases. Macrophage-targeted therapeutics have now added significant value to the lives and quality of life of patients, without undue adverse effects in multiple disease settings. We anticipate examining and integrating the role of macrophages in the instigation and advancement of various diseases. The major focus of the book is on recent advancements in various targeting strategies using delivery systems or nanocarriers followed by application of these nanocarriers for the treatment of macrophage associated disorders. Macrophage Targeted Delivery Systems is primarily targeted to Pharmaceutical Industry & Academia, Medical & Pharmaceutical Professionals, Undergraduate & Post graduate students and Research Scholars, Ph.D, post docs working in the field of medical and pharmaceutical sciences. © The Editor(s) (if applicable) and The Author(s), 2022. All rights reserved.

14.
Front Immunol ; 14: 1158859, 2023.
Article in English | MEDLINE | ID: covidwho-2313613

ABSTRACT

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor originally identified as a stimulus that induces the differentiation of bone marrow progenitor cells into granulocytes and macrophages. GM-CSF is now considered to be a multi-origin and pleiotropic cytokine. GM-CSF receptor signals activate JAK2 and induce nuclear signals through the JAK-STAT, MAPK, PI3K, and other pathways. In addition to promoting the metabolism of pulmonary surfactant and the maturation and differentiation of alveolar macrophages, GM-CSF plays a key role in interstitial lung disease, allergic lung disease, alcoholic lung disease, and pulmonary bacterial, fungal, and viral infections. This article reviews the latest knowledge on the relationship between GM-CSF and lung balance and lung disease, and indicates that there is much more to GM-CSF than its name suggests.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Lung , Humans , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Lung/metabolism , Lung Diseases, Interstitial , Macrophages, Alveolar , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
15.
European Journal of Inflammation ; 20, 2022.
Article in English | Web of Science | ID: covidwho-2311328

ABSTRACT

The purpose of this study was to investigate the expression of pyroptosis-related factors (NLRP3, IL-18, NF-kappa B, HMGB-1, and GSDMD) in patients who died of COVID-19. The expression levels of NLRP3, IL-18, NF-kappa B, HMGB-1, and GSDMD in lung and spleen tissues of the COVID-19 group and the control group were detected by tissue immunofluorescence. The control group includes lung tissues and spleen tissues of two patients who died unexpectedly without SARS-CoV-2 infection, and the COVID-19 group includes the lung and spleen tissues of three patients who died of SARS-CoV-2 virus infection. The positive rates of NF-kappa B, NLRP3, IL-18, and GSDMD in the lung tissues from the control group and COVID-19 group were 9.8% vs 73.4% (p = 0.000), 5.5% vs 63.6% (p = 0.000), 24.4% vs 76.2% (p = 0.000), and 17.5% and 46.8% (p = 0.000) respectively. The positive rates of NF-kappa B, NLRP3, IL-18, HMGB-1, and GSDMD in the spleen tissues from the control group and COVID-19 group were 20.6% vs 71.2% (p = 0.000), 18.9% vs 72.0% (p = 0.000), 15.2% vs 64.8% (p = 0.000), 27.6% vs 69.2% (p = 0.000), and 23% and 48.8% (p = 0.000), respectively. The positive rates of SARS-CoV-2 spike protein in the CD68 positive cells of the lung and spleen in the control group and COVID-19 group were 2.5% vs 56.8% (p = 0.000);3.0% vs 64.9% (p = 0.000) respectively. The rates of NF-kappa B positive nuclei in the control group and COVID-19 group were 13.4% vs 51.4% (p = 0.000) in the lung and 38.2% vs 59.3% (p = 0.000) in the spleen. The rates of HMGB-1 positive cytoplasm in the control and the COVID-19 group were 19.7% vs 50.3% (p = 0.000) in the lung and 12.3% vs 45.2% (p = 0.000) in the spleen. The targets of SARS-CoV-2 are the lung and spleen, where increased macrophages could be involved in the up-regulation of pyroptosis-related inflammatory factors such as NF-kappa B, HMGB-1, NLRP3, IL-18, and GSDMD.

16.
Clin Immunol ; 249: 109289, 2023 04.
Article in English | MEDLINE | ID: covidwho-2310145

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening conditions triggered by multiple intra- and extra-pulmonary injury factors, characterized by complicated molecular mechanisms and high mortality. Great strides have been made in the field of immunometabolism to clarify the interplay between intracellular metabolism and immune function in the past few years. Emerging evidence unveils the crucial roles of immunometabolism in inflammatory response and ALI. During ALI, both macrophages and lymphocytes undergo robust metabolic reprogramming and discrete epigenetic changes after activated. Apart from providing ATP and biosynthetic precursors, these metabolic cellular reactions and processes in lung also regulate inflammation and immunity.In fact, metabolic reprogramming involving glucose metabolism and fatty acidoxidation (FAO) acts as a double-edged sword in inflammatory response, which not only drives inflammasome activation but also elicits anti-inflammatory response. Additionally, the features and roles of metabolic reprogramming in different immune cells are not exactly the same. Here, we outline the evidence implicating how adverse factors shape immunometabolism in differentiation types of immune cells during ALI and summarize key proteins associated with energy expenditure and metabolic reprogramming. Finally, novel therapeutic targets in metabolic intermediates and enzymes together with current challenges in immunometabolism against ALI were discussed.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Humans , Lung , Inflammation , Acute Lung Injury/drug therapy , Macrophages , Respiratory Distress Syndrome/drug therapy
17.
Transcriptomics in Health and Disease, Second Edition ; : 395-435, 2022.
Article in English | Scopus | ID: covidwho-2301705

ABSTRACT

Mycoses are infectious diseases caused by fungi, which incidence has increased in recent decades due to the increasing number of immunocompromised patients and improved diagnostic tests. As eukaryotes, fungi share many similarities with human cells, making it difficult to design drugs without side effects. Commercially available drugs act on a limited number of targets and have been reported fungal resistance to commonly used antifungal drugs. Therefore, elucidating the pathogenesis of fungal infections, the fungal strategies to overcome the hostile environment of the host, and the action of antifungal drugs is essential for developing new therapeutic approaches and diagnostic tests. Large-scale transcriptional analyses using microarrays and RNA sequencing (RNA-seq), combined with improvements in molecular biology techniques, have improved the study of fungal pathogenicity. Such techniques have provided insights into the infective process by identifying molecular strategies used by the host and pathogen during the course of human mycoses. This chapter will explore the latest discoveries regarding the transcriptome of major human fungal pathogens. Further we will highlight genes essential for host–pathogen interactions, immune response, invasion, infection, antifungal drug response, and resistance. Finally, we will discuss their importance to the discovery of new molecular targets for antifungal drugs. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2014, 2022.

18.
Exp Ther Med ; 25(5): 219, 2023 May.
Article in English | MEDLINE | ID: covidwho-2293423

ABSTRACT

The present study investigated the immunostimulatory activity and anti-obesity activity of Adenocaulon himalaicum leaf extracts (AHL) in RAW264.7 cells and 3T3-L1 cells. AHL increased the production of immunostimulatory factors, such as NO, inducible nitric oxide synthase (iNOS), IL-1ß, IL-6 and TNF-α and activated the phagocytotic activity in RAW264.7 cells. Inhibition of Toll-like receptor 4 (TLR4) attenuated the AHL-mediated production of immunostimulatory factors and activation of phagocytic activity in RAW264.7 cells. Inhibition of p38 and JNK blocked the AHL-mediated production of immunostimulatory factors, whereas inhibition of TLR4 suppressed the AHL-mediated phosphorylation of p38 and JNK. Additionally, AHL blocked the lipid accumulation in 3T3-L1 cells. AHL downregulated proliferator-activated receptor γ, CCAAT enhancer binding protein α and perilipin-1 levels, while upregulating adipose triglyceride lipase, phosphorylated (p-)hormone-sensitive lipase, p-adenosine monophosphate activated protein kinase, uncoupling protein 1, peroxisome-proliferator-activated receptor-γ coactivator-1 α and PR domain containing 16 levels in 3T3-L1 cells. These findings suggested that AHL may exert immunostimulatory activity through macrophages via TLR4-mediated activation of p38 and JNK and anti-obesity activity by blocking lipid accumulation via the inhibition of adipogenesis and induction of lipolysis and browning of white adipocytes.

19.
Angiogenesis ; 2022 Nov 12.
Article in English | MEDLINE | ID: covidwho-2305635

ABSTRACT

A wide range of cardiac symptoms have been observed in COVID-19 patients, often significantly influencing the clinical outcome. While the pathophysiology of pulmonary COVID-19 manifestation has been substantially unraveled, the underlying pathomechanisms of cardiac involvement in COVID-19 are largely unknown. In this multicentre study, we performed a comprehensive analysis of heart samples from 24 autopsies with confirmed SARS-CoV-2 infection and compared them to samples of age-matched Influenza H1N1 A (n = 16), lymphocytic non-influenza myocarditis cases (n = 8), and non-inflamed heart tissue (n = 9). We employed conventional histopathology, multiplexed immunohistochemistry (MPX), microvascular corrosion casting, scanning electron microscopy, X-ray phase-contrast tomography using synchrotron radiation, and direct multiplexed measurements of gene expression, to assess morphological and molecular changes holistically. Based on histopathology, none of the COVID-19 samples fulfilled the established diagnostic criteria of viral myocarditis. However, quantification via MPX showed a significant increase in perivascular CD11b/TIE2 + -macrophages in COVID-19 over time, which was not observed in influenza or non-SARS-CoV-2 viral myocarditis patients. Ultrastructurally, a significant increase in intussusceptive angiogenesis as well as multifocal thrombi, inapparent in conventional morphological analysis, could be demonstrated. In line with this, on a molecular level, COVID-19 hearts displayed a distinct expression pattern of genes primarily coding for factors involved in angiogenesis and epithelial-mesenchymal transition (EMT), changes not seen in any of the other patient groups. We conclude that cardiac involvement in COVID-19 is an angiocentric macrophage-driven inflammatory process, distinct from classical anti-viral inflammatory responses, and substantially underappreciated by conventional histopathologic analysis. For the first time, we have observed intussusceptive angiogenesis in cardiac tissue, which we previously identified as the linchpin of vascular remodeling in COVID-19 pneumonia, as a pathognomic sign in affected hearts. Moreover, we identified CD11b + /TIE2 + macrophages as the drivers of intussusceptive angiogenesis and set forward a putative model for the molecular regulation of vascular alterations.

SELECTION OF CITATIONS
SEARCH DETAIL